SARS_CoV_2 mutation literature information.


  Immune evasion and chronological decrease in titer of neutralizing antibody against SARS-CoV-2 and its variants of concerns in COVID-19 patients.
 PMID: 35398519       2022       Clinical immunology (Orlando, Fla.)
Introduction: This lineage has three main subtypes: B.1.617.1 (Kappa variant) and B.1.617.3, characterized by L452R and E484Q mutation in RBD, and B.1.617.2 (Delta variant), characterized by L452R and T478K in RBD.


  RBD-mRNA vaccine induces broadly neutralizing antibodies against Omicron and multiple other variants and protects mice from SARS-CoV-2 challenge.
 PMID: 35489692       2022       Translational research
Abstract: The RBD-mRNA-induced antibodies exerted moderate neutralization against authentic B.1.617.2 and B.1.1.529 variants, and pseudotyped B.1.351 and P.1 lineage variants containing K417N/T, E484K, and N501Y mutations, the B.1.617.2 lineage variant harboring L452R, T478K, and P681R mutations, and the B.1.1.529 lineage variant containing 38 mutations in the S protein.


  Emergence and phenotypic characterization of the global SARS-CoV-2 C.1.2 lineage.
 PMID: 35396511       2022       Nature communications
Method: The SARS-CoV-2 Wuhan-1 spike, cloned into pCDNA3.1, was mutated using the QuikChange Lightning Site-Directed Mutagenesis kit (Agilent Technologies) and NEBuilder HiFi DNA Assembly Master Mix (NEB) to include D614G (wild-type) or lineage defining mutations for Beta (L18F,
Result: Additional substitutions include P25L (in ~43% of viruses) and W152R (in ~7%) in the NTD, T478K (~17%) in the RBM, L585F (~17%) in S1, P681H (~8%) adjacent to the furin cleavage site, A879T (~7%), D936H (~5%), and H1101Q (~8%) in S2, with additional amino acid changes detected in less than 5% of viruses.


  SARS-CoV-2 BA.1 variant is neutralized by vaccine booster-elicited serum, but evades most convalescent serum and therapeutic antibodies.
 PMID: 35380448       2022       Science translational medicine
Result: We compared the neutralization titers of these serum samples against pseudoviruses bearing spike proteins from the following variants: D614G, Omicron (A67V, del69-70, T95I, del142-144, Y145D, del211, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R,


  The dynamics of circulating SARS-CoV-2 lineages in Bogor and surrounding areas reflect variant shifting during the first and second waves of COVID-19 in Indonesia.
 PMID: 35341058       2022       PeerJ
Abstract: Additionally, the S_T19R, S_E156G, S_F157del, S_R158del, S_L452R, S_T478K, S_D950N and S_V1264L changes were only detected in Delta va
Result: We also observed that Delta variants carried various amino acid changes that differ from the first wave, which included changes within the spike protein, namely S_T19R, S_G142D, S_E156G, S_F157del, S_R158del, S_L452R, S_T478K, and S_D950N.


  Early Genomic, Epidemiological, and Clinical Description of the SARS-CoV-2 Omicron Variant in Mexico City.
 PMID: 35336952       2022       Viruses
Result: On the other hand, the prevalence of eleven substitutions (S371L, S373P, S375F, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and Y505H) was lower in Mexico City and Mexico outside of Mexico City, Israel, the United Kingdom, and India (32-70%) than in Australia, Canada, Japan, and the USA (91-100%) (Figure 4).


  Protective Immunity of the Primary SARS-CoV-2 Infection Reduces Disease Severity Post Re-Infection with Delta Variants in Syrian Hamsters.
 PMID: 35337002       2022       Viruses
Introduction: AY.1 has amino acid substitutions at T19R, E156G, 157/158 del, W258L, K417N, L452R, T478K, D614G, D950N and P681R.
Introduction: The amino acid substitutions in the spike protein of the Delta variant, such as D614G, T478K, P681R and L452R, are known to affect transmissibility and neutralization.
Method: Delta AY.1 variant had D614G, E156G, F157del,  PMID: 35405385       2022       EBioMedicine
Discussion: It harbours N501Y, K417N, T478K, E484A which are amino acid substitutions linked with immune escape.


  Insights from computational analysis: how does the SARS-CoV-2 Delta (B.1.617.2) variant hijack ACE2 more effectively?
 PMID: 35364605       2022       Physical chemistry chemical physics
Abstract: The results showed that the existence of L452R and T478K mutations can trigger the effective hijacking of ACE2 by the Delta variant through the following three ways: (i) these two mutations can significantly enhance the electrostatic energy of the system by the introduction of two positively charged amino acids (Arg and Lys), thereby increasing the binding affinity of RBD and ACE2, (ii) the Loops 1, 3, and 4 in the receptor-binding motif (RBM) of RBD form a tighter conformation under the dominance of the T478K mutation, allowing ACE2 to be captured more effectively than the wild-type system, and (iii) these conformational changes lead to a more stable hydrogen bond in the Delta variant, which further ensures the stability of the binding.


  Mutational cascade of SARS-CoV-2 leading to evolution and emergence of omicron variant.
 PMID: 35367284       2022       Virus research
Table: T478K



Browser Board

 Co-occurred Entities




   Filtrator