HIV mutation literature information.


  Long-term exposure of HIV type 1-infected cell cultures to combinations of the novel quinoxaline GW420867X with lamivudine, abacavir, and a variety of nonnucleoside reverse transcriptase inhibitors.
 PMID: 10777142       2000       AIDS research and human retroviruses
Abstract: Abacavir plus GW420867X selected only for NNRTI-specific mutations (i.e., K101E, K103R, V106A, and Y181C), including the novel L100V mutation.
Abstract: Lamivudine plus GW420867X selected for the 3TC-specific M184I mutation and a number of NNRTI-characteristic mutations (i.e., V106A, V108I, and Y188H).


  N-[2-(4-methylphenyl)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea as a potent inhibitor of NNRTI-resistant and multidrug-resistant human immunodeficiency virus type 1.
 PMID: 10819437       2000       Antiviral chemistry & chemotherapy
Abstract: Notably, HI-244 was 20 times more effective than trovirdine against the multidrug-resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V, 41L and 215Y) and seven times more potent than trovirdine against the NNRTI-resistant HIV-1 strain A17 with a Y181C mutation.


  Non-nucleoside HIV-1 reverse transcriptase inhibitors: synthesis and biological evaluation of novel quinoxalinylethylpyridylthioureas as potent antiviral agents.
 PMID: 10819438       2000       Antiviral chemistry & chemotherapy
Abstract: Several of these novel non-nucleoside RT inhibitors, with a substituted pyrroloquinoxalinone heteroaromatic skeleton, showed inhibitory activity against wild-type RT as well as against mutant RTs containing the single amino acid substitutions L1001, K103N, V106A, Y1811 and Y188L that was much greater than other non-nucleoside inhibitors such as nevirapine.


  Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy.
 PMID: 10952598       2000       Antimicrobial agents and chemotherapy
Abstract: V106A, Y181C, and Y188C mutations, which have been associated with high levels of resistance to other NNRTIs, were rare in the patient samples in this study, both before and after exposure to efavirenz.


  Mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture.
 PMID: 10954539       2000       Journal of virology
Abstract: Of the NNRTI-resistant mutants, V179D was more fit than Y181C, and both of these mutants were more fit than V106A, which demonstrated the greatest reduction in RNase H cleavage.
Abstract: The V106A reverse transcriptase demonstrated a three- to fourfold slowing of both DNA 3'-end-directed and RNA 5'-end-directed RNase H cleavage relative to both wild-type and V179D enzymes, similar to what was observed for P236L in a previously published study (P.
Abstract: Three mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (V106A, V179D, and


  Piperidinylethyl, phenoxyethyl and fluoroethyl bromopyridyl thiourea compounds with potent anti-HIV activity.
 PMID: 11142631       2000       Antiviral chemistry & chemotherapy
Abstract: Notably, the lead fluorothiourea compounds 11 and 12 were both substantially more active against the NNRTI-resistant HIV strains RT-MDR (V106A) and A17 (Y181C) than nevirapine or delavirdine.


  Structural determinants of HIV-1 reverse transcriptase stereoselectivity towards (beta)-L-deoxy- and dideoxy-pyrimidine nucleoside triphosphates: molecular basis for the combination of L-dideoxynucleoside analogs with non-nucleoside inhibitors in anti HIV chemotherapy.
 PMID: 10432681       1999       Nucleosides & nucleotides
Abstract: We have compared the HIV-1 RT mutants containing the single substitutions L100I, K103N, V106A, V179D, Y181I and Y188L, known to confer NNI-resistance in treated patients, to HIV-1 RT wt for their sensitivity towards inhibition by D- and L-deoxy- and dideoxy-nucleoside tiphosphates.


  N-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea and N'-[2-(1-cyclohexenyl)ethyl]-N'-[2-(5-chloropyridyl)]-thiourea as potent inhibitors of multidrug-resistant human immunodeficiency virus-1.
 PMID: 10509923       1999       Bioorganic & medicinal chemistry letters
Abstract: Surprisingly, the lead compounds HI-346 and HI-445 were 3-times more effective against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74V,41L, and 215Y) than they were against HTLV(IIIB) with wild-type RT.


  Pyrrolobenzoxazepinone derivatives as non-nucleoside HIV-1 RT inhibitors: further structure-activity relationship studies and identification of more potent broad-spectrum HIV-1 RT inhibitors with antiviral activity.
 PMID: 10543890       1999       Journal of medicinal chemistry
Abstract: Compared with the lead 6 and nevirapine, several of the synthesized compounds (PBOs 13a-d and PPOs 13i-k) displayed higher inhibitory activity against wild-type RT and clinically relevant mutant RTs containing the single amino acid substitutions L100I, K103N, V106A, Y181I, and Y188L.


  N'-[2-(2-thiophene)ethyl]-N'-[2-(5-bromopyridyl)] thiourea as a potent inhibitor of NNI-resistant and multidrug-resistant human immunodeficiency virus-1.
 PMID: 10617082       1999       Bioorganic & medicinal chemistry letters
Abstract: The thiophene-ethyl thiourea (TET) compound N'-[2-(2-thiophene)ethyl]-N'-[2-(5-bromopyridyl)]-thiourea (compound HI-443) was five times more potent than trovirdine, 1250 times more potent than nevirapine, 100 times more potent than delavirdine, 75 times more potent than MKC-442, and 50 times more potent than AZT against the multidrug resistant HIV-1 strain RT-MDR with a V106A mutation.



Browser Board

 Co-occurred Entities




   Filtrator