In vivo drug resistance mutation dynamics from the early to chronic stage of infection in antiretroviral-therapy-naive HIV-infected men who have sex with men.
Abstract: Four individuals exhibited additional DRMs (M46I/L; I47A; I54M, L100V) as HIV minority populations (abundance, 2-20%) that emerged during the chronic stage but ephemerally.
Expanded Spectrum of Antiretroviral-Selected Mutations in Human Immunodeficiency Virus Type 2.
PMID: 31965175
2020
The Journal of infectious diseases
Method: Participants with a history of genotypic/phenotypic drug resistance to protease inhibitors (PIs) or with HIV-1 genotypic drug resistance to PIs at baseline (including D30N, M46I/L, I47V/A, G48V, I50L, I54M/L, Q58E, T74P, L76V, V82A/F/L/T/S, N83D, I84V, N88S, or L90M) were excluded, despite any reported effects of PI resistance or resistance
Switching to bictegravir/emtricitabine/tenofovir alafenamide maintained HIV-1 RNA suppression in participants with archived antiretroviral resistance including M184V/I.
PMID: 31430369
2019
The Journal of antimicrobial chemotherapy
Method: Primary PI-R substitutions were D30N, V32I, M46I/L, I47V/A, G48V, I50V/L, I54M/L, Q58E, T74P, L76V, V82A/F/L/S/T, N83D, I84V, N88S and L90M in PR.
An in silico pharmacological approach toward the discovery of potent inhibitors to combat drug resistance HIV-1 protease variants.
PMID: 30506751
2019
Journal of cellular biochemistry
Abstract: Herein, we strive for compounds that can stifle the function of wild-type (WT) HIV-1 PR along with four major single mutants (I54M, V82T, I84V, and L90M) instigating resistance to the PIs using in silico approach.
Mechanism of Darunavir (DRV)'s High Genetic Barrier to HIV-1 Resistance: A Key V32I Substitution in Protease Rarely Occurs, but Once It Occurs, It Predisposes HIV-1 To Develop DRV Resistance.
Abstract: Here, we show that the preexistence of certain single amino acid substitutions such as V32I, I54M, A71V, and I84V in HIV-1 protease facilitates the development of high-level DRV resistance.
Abstract: We also reported that four amino acid substitutions (V32I, L33F, I54M, and I84V) identified in the protease of HIVDRVRP51 are largely responsible for its high-level resistance to DRV.
Abstract: When two infectious recombinant HIV-1 clones carrying I54M and I84V (rHIVI54M and rHIVI84V, respectively) were selected in the presence of DRV, V32
[Genetic analysis of the mutations in HIV-1 infected population in Ecuador].
PMID: 29652972
2018
Revista chilena de infectologia
Abstract: Results The most frequent mutations were M184V/I, K101E/P/H, K103N/S, D30N, M46L/I, I54L/M, V82T/F/A/S/L and L90M in adults and F77L, K103N/S, M46L/I, V82T/F/A/S/L and L90M in children.
Week 48 resistance analysis of Elvitegravir/Cobicistat/Emtricitabine/Tenofovir DF versus Atazanavir + Ritonavir + Emtricitabine/Tenofovir DF in HIV-1 infected women (WAVES study GS-US-236-0128).
Introduction: The latest International AIDS Society (IAS)-USA panel list shows 11 mutations associated with DRV resistance: V11I, V32I, L33F, I47V, I50V, I54M/L, T74P, L76V, I84V, and L89V (Wensing et al.,).